{ "id": "2101.06063", "version": "v1", "published": "2021-01-15T11:21:51.000Z", "updated": "2021-01-15T11:21:51.000Z", "title": "Minkowski Inequality on Asymptotically Conical manifolds", "authors": [ "Luca Benatti", "Mattia Fogagnolo", "Lorenzo Mazzieri" ], "categories": [ "math.DG", "math.AP" ], "abstract": "In this paper we consider Asymptotically Conical Riemannian manifolds $(M,g)$ of dimension $n\\geq 3$ with nonnegative Ricci curvature. For every open bounded subset $\\Omega\\subseteq M$ with smooth boundary we prove that \\begin{equation} \\left(\\frac{\\vert{\\partial \\Omega^*}\\vert}{\\vert{\\mathbb{S}^{n-1}}\\vert}\\right)^{\\!\\frac{n-2}{n-1}}\\mathrm{AVR}(g)^{\\frac{1}{n-1}}\\leq \\frac{1}{\\vert{\\mathbb{S}^{n-1}}\\vert}\\int\\limits_{\\partial \\Omega} \\left\\vert{ \\frac{\\mathrm{H}}{n-1}} \\right\\vert\\,\\mathrm{d} \\sigma , \\end{equation} where $\\mathrm{H}$ is the mean curvature of $\\partial \\Omega$, $\\mathrm{AVR}(g)$ is the asymptotic volume ratio of $(M,g)$ and $\\Omega^*$ is the strictly outward minimising hull of $\\Omega$.", "revisions": [ { "version": "v1", "updated": "2021-01-15T11:21:51.000Z" } ], "analyses": { "subjects": [ "49Q10", "35A16", "53C21", "35B06", "53E10", "39B62", "31C15", "35B40" ], "keywords": [ "asymptotically conical manifolds", "minkowski inequality", "asymptotic volume ratio", "asymptotically conical riemannian manifolds", "mean curvature" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }