arXiv Analytics

Sign in

arXiv:2101.05911 [math.CO]AbstractReferencesReviewsResources

Counting paths, cycles and blow-ups in planar graphs

Christopher Cox, Ryan R. Martin

Published 2021-01-14Version 1

For a planar graph $H$, let $\operatorname{\mathbf{N}}_{\mathcal P}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In this paper, we prove that $\operatorname{\mathbf{N}}_{\mathcal P}(n,P_7)\sim{4\over 27}n^4$, $\operatorname{\mathbf{N}}_{\mathcal P}(n,C_6)\sim(n/3)^3$, $\operatorname{\mathbf{N}}_{\mathcal P}(n,C_8)\sim(n/4)^4$ and $\operatorname{\mathbf{N}}_{\mathcal P}(n,K_4\{1\})\sim(n/6)^6$, where $K_4\{1\}$ is the $1$-subdivision of $K_4$. In addition, we obtain significantly improved upper bounds on $\operatorname{\mathbf{N}}_{\mathcal P}(n,P_{2m+1})$ and $\operatorname{\mathbf{N}}_{\mathcal P}(n,C_{2m})$ for $m\geq 4$. For a wide class of graphs $H$, the key technique developed in this paper allows us to bound $\operatorname{\mathbf{N}}_{\mathcal P}(n,H)$ in terms of an optimization problem over weighted graphs.

Comments: 31 pages
Categories: math.CO
Subjects: 05C35
Related articles: Most relevant | Search more
arXiv:math/0602191 [math.CO] (Published 2006-02-09, updated 2007-03-02)
On the maximum number of cliques in a graph
arXiv:0906.4142 [math.CO] (Published 2009-06-22, updated 2011-03-30)
The maximum number of cliques in a graph embedded in a surface
arXiv:1005.0582 [math.CO] (Published 2010-05-04)
An extremal theorem in the hypercube