{ "id": "2101.05911", "version": "v1", "published": "2021-01-14T23:44:19.000Z", "updated": "2021-01-14T23:44:19.000Z", "title": "Counting paths, cycles and blow-ups in planar graphs", "authors": [ "Christopher Cox", "Ryan R. Martin" ], "comment": "31 pages", "categories": [ "math.CO" ], "abstract": "For a planar graph $H$, let $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In this paper, we prove that $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,P_7)\\sim{4\\over 27}n^4$, $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,C_6)\\sim(n/3)^3$, $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,C_8)\\sim(n/4)^4$ and $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,K_4\\{1\\})\\sim(n/6)^6$, where $K_4\\{1\\}$ is the $1$-subdivision of $K_4$. In addition, we obtain significantly improved upper bounds on $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,P_{2m+1})$ and $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,C_{2m})$ for $m\\geq 4$. For a wide class of graphs $H$, the key technique developed in this paper allows us to bound $\\operatorname{\\mathbf{N}}_{\\mathcal P}(n,H)$ in terms of an optimization problem over weighted graphs.", "revisions": [ { "version": "v1", "updated": "2021-01-14T23:44:19.000Z" } ], "analyses": { "subjects": [ "05C35" ], "keywords": [ "counting paths", "vertex planar graph", "optimization problem", "maximum number", "wide class" ], "note": { "typesetting": "TeX", "pages": 31, "language": "en", "license": "arXiv", "status": "editable" } } }