arXiv Analytics

Sign in

arXiv:2101.00632 [math.NT]AbstractReferencesReviewsResources

An asymptotic expansion of Selberg's central limit theorem near the critical line

Yoonbok Lee

Published 2021-01-03Version 1

We find an asymptotic expansion of Selberg's central limit theorem for the Riemann zeta function on $\sigma = \frac12 + ( \log T)^{-\theta}$ and $t \in [T, 2T]$, where $ 0 < \theta < \frac12$ is a constant.

Related articles: Most relevant | Search more
arXiv:1309.4793 [math.NT] (Published 2013-09-18, updated 2013-11-11)
Resonant Interactions Along the Critical Line of the Riemann Zeta Function
arXiv:1211.0044 [math.NT] (Published 2012-10-31)
Self-intersections of the Riemann zeta function on the critical line
arXiv:1109.2224 [math.NT] (Published 2011-09-10, updated 2012-05-15)
Negative values of the Riemann zeta function on the critical line