arXiv:1109.2224 [math.NT]AbstractReferencesReviewsResources
Negative values of the Riemann zeta function on the critical line
Justas Kalpokas, Maxim A. Korolev, Jörn Steuding
Published 2011-09-10, updated 2012-05-15Version 3
We investigate the intersections of the curve $\mathbb{R}\ni t\mapsto \zeta({1\over 2}+it)$ with the real axis. We show unconditionally that the zeta-function takes arbitrarily large positive and negative values on the critical line.
Related articles: Most relevant | Search more
arXiv:1211.0044 [math.NT] (Published 2012-10-31)
Self-intersections of the Riemann zeta function on the critical line
Resonant Interactions Along the Critical Line of the Riemann Zeta Function
arXiv:1807.11642 [math.NT] (Published 2018-07-31)
Extreme values for $S_n(σ,t)$ near the critical line