arXiv Analytics

Sign in

arXiv:2012.13750 [math.PR]AbstractReferencesReviewsResources

Delocalization of the height function of the six-vertex model

Hugo Duminil-Copin, Alex Karrila, Ioan Manolescu, Mendes Oulamara

Published 2020-12-26Version 1

We show that the height function of the six-vertex model, in the parameter range $\mathbf a=\mathbf b=1$ and $\mathbf c\ge1$, is delocalized with logarithmic variance when $\mathbf c\le 2$. This complements the earlier proven localization for $\mathbf c>2$. Our proof relies on Russo--Seymour--Welsh type arguments, and on the local behaviour of the free energy of the cylindrical six-vertex model, as a function of the unbalance between the number of up and down arrows.

Related articles: Most relevant | Search more
arXiv:1909.07351 [math.PR] (Published 2019-09-16)
Spins, percolation and height functions
arXiv:2004.05337 [math.PR] (Published 2020-04-11)
On delocalization in the six-vertex model
arXiv:1911.00092 [math.PR] (Published 2019-10-31)
Logarithmic variance for the height function of square-ice