{ "id": "2012.13750", "version": "v1", "published": "2020-12-26T14:37:52.000Z", "updated": "2020-12-26T14:37:52.000Z", "title": "Delocalization of the height function of the six-vertex model", "authors": [ "Hugo Duminil-Copin", "Alex Karrila", "Ioan Manolescu", "Mendes Oulamara" ], "comment": "54 pages, 16 figures", "categories": [ "math.PR", "math-ph", "math.MP" ], "abstract": "We show that the height function of the six-vertex model, in the parameter range $\\mathbf a=\\mathbf b=1$ and $\\mathbf c\\ge1$, is delocalized with logarithmic variance when $\\mathbf c\\le 2$. This complements the earlier proven localization for $\\mathbf c>2$. Our proof relies on Russo--Seymour--Welsh type arguments, and on the local behaviour of the free energy of the cylindrical six-vertex model, as a function of the unbalance between the number of up and down arrows.", "revisions": [ { "version": "v1", "updated": "2020-12-26T14:37:52.000Z" } ], "analyses": { "subjects": [ "60K35", "82B20", "82B27" ], "keywords": [ "height function", "delocalization", "earlier proven localization", "russo-seymour-welsh type arguments", "logarithmic variance" ], "note": { "typesetting": "TeX", "pages": 54, "language": "en", "license": "arXiv", "status": "editable" } } }