arXiv Analytics

Sign in

arXiv:2012.10954 [math.RT]AbstractReferencesReviewsResources

Nonlinear realisations of Lie superalgebras

Jakob Palmkvist

Published 2020-12-20Version 1

For any decomposition of a Lie superalgebra $\mathcal G$ into a direct sum $\mathcal G=\mathcal H\oplus\mathcal E$ of a subalgebra $\mathcal H$ and a subspace $\mathcal E$, we construct a nonlinear realisation of $\mathcal G$ on $\mathcal E$. The result generalises a theorem by Kantor from Lie algebras to Lie superalgebras. When G is a differential graded Lie algebra, it gives a construction of an associated $L_\infty$-algebra.

Related articles: Most relevant | Search more
arXiv:math/0509105 [math.RT] (Published 2005-09-05, updated 2005-09-08)
Explicit Realization of Induced and Coinduced modules over Lie Superalgebras by Differential Operators
arXiv:1306.2582 [math.RT] (Published 2013-06-11, updated 2015-04-15)
On endotrivial modules for Lie superalgebras
arXiv:math/0203011 [math.RT] (Published 2002-03-01, updated 2002-09-18)
Kazhdan-Lusztig polynomials and character formulae for the Lie superalgebra gl(m|n)