{ "id": "2012.10954", "version": "v1", "published": "2020-12-20T15:42:13.000Z", "updated": "2020-12-20T15:42:13.000Z", "title": "Nonlinear realisations of Lie superalgebras", "authors": [ "Jakob Palmkvist" ], "comment": "25 pages", "categories": [ "math.RT", "hep-th", "math.RA" ], "abstract": "For any decomposition of a Lie superalgebra $\\mathcal G$ into a direct sum $\\mathcal G=\\mathcal H\\oplus\\mathcal E$ of a subalgebra $\\mathcal H$ and a subspace $\\mathcal E$, we construct a nonlinear realisation of $\\mathcal G$ on $\\mathcal E$. The result generalises a theorem by Kantor from Lie algebras to Lie superalgebras. When G is a differential graded Lie algebra, it gives a construction of an associated $L_\\infty$-algebra.", "revisions": [ { "version": "v1", "updated": "2020-12-20T15:42:13.000Z" } ], "analyses": { "keywords": [ "lie superalgebra", "nonlinear realisation", "differential graded lie algebra", "direct sum", "result generalises" ], "note": { "typesetting": "TeX", "pages": 25, "language": "en", "license": "arXiv", "status": "editable" } } }