arXiv Analytics

Sign in

arXiv:2012.10835 [math.NT]AbstractReferencesReviewsResources

Bounds for $\rm GL_2\times GL_2$ $L$-functions in depth aspect

Qingfeng Sun

Published 2020-12-20Version 1

Let $f$ and $g$ be holomorphic or Maass cusp forms for $\rm SL_2(\mathbb{Z})$ and let $\chi$ be a primitive Dirichlet character of prime power conductor $\mathfrak{q}=p^{\kappa}$ with $p$ prime and $\kappa>12$. A subconvex bound for the central values of the Rankin-Selberg $L$-functions $L(s,f\otimes g \otimes \chi)$ is proved in the depth-aspect $$ L\left(\frac{1}{2},f\otimes g \otimes \chi\right)\ll_{f,g,\varepsilon} p^{3/4}\mathfrak{q}^{15/16+\varepsilon}. $$

Comments: 15 pages. Comments are welcome!
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1711.02170 [math.NT] (Published 2017-11-06)
On Elliptic Curves of prime power conductor over imaginary quadratic fields with class number one
arXiv:1810.10424 [math.NT] (Published 2018-10-24)
Quadratic forms connected with Fourier coefficients of holomorphic and Maass cusp forms
arXiv:2309.16667 [math.NT] (Published 2023-09-28)
Subconvexity for $L$-functions on ${\rm U}(n) \times {\rm U}(n+1)$ in the depth aspect