{ "id": "2012.10835", "version": "v1", "published": "2020-12-20T03:28:09.000Z", "updated": "2020-12-20T03:28:09.000Z", "title": "Bounds for $\\rm GL_2\\times GL_2$ $L$-functions in depth aspect", "authors": [ "Qingfeng Sun" ], "comment": "15 pages. Comments are welcome!", "categories": [ "math.NT" ], "abstract": "Let $f$ and $g$ be holomorphic or Maass cusp forms for $\\rm SL_2(\\mathbb{Z})$ and let $\\chi$ be a primitive Dirichlet character of prime power conductor $\\mathfrak{q}=p^{\\kappa}$ with $p$ prime and $\\kappa>12$. A subconvex bound for the central values of the Rankin-Selberg $L$-functions $L(s,f\\otimes g \\otimes \\chi)$ is proved in the depth-aspect $$ L\\left(\\frac{1}{2},f\\otimes g \\otimes \\chi\\right)\\ll_{f,g,\\varepsilon} p^{3/4}\\mathfrak{q}^{15/16+\\varepsilon}. $$", "revisions": [ { "version": "v1", "updated": "2020-12-20T03:28:09.000Z" } ], "analyses": { "keywords": [ "depth aspect", "maass cusp forms", "prime power conductor", "primitive dirichlet character", "subconvex bound" ], "note": { "typesetting": "TeX", "pages": 15, "language": "en", "license": "arXiv", "status": "editable" } } }