arXiv:2011.14491 [math.AP]AbstractReferencesReviewsResources
Bounded weak solutions to elliptic PDE with data in Orlicz spaces
David Cruz-Uribe, Scott Rodney
Published 2020-11-30Version 1
A classical regularity result is that non-negative solutions to the Dirichlet problem $\Delta u =f$ in a bounded domain $\Omega$, where $f\in L^q(\Omega)$, $q>\frac{n}2$, satisfy $\|u\|_{L^\infty(\Omega)} \leq C\|f\|_{L^q(\Omega)}$. We extend this result in three ways: we replace the Laplacian with a degenerate elliptic operator; we show that we can take the data $f$ in an Orlicz space $L^A(\Omega)$ that lies strictly between $L^{\frac{n}{2}}(\Omega)$ and $L^q(\Omega)$, $q>\frac{n}2$; and we show that that we can replace the $L^A$ norm in the right-hand side by a smaller expression involving the logarithm of the "entropy bump" $\|f\|_{L^A(\Omega)}/\|f\|_{L^{\frac{n}{2}}(\Omega)}$, generalizing a result due to Xu.