{ "id": "2011.14491", "version": "v1", "published": "2020-11-30T01:26:58.000Z", "updated": "2020-11-30T01:26:58.000Z", "title": "Bounded weak solutions to elliptic PDE with data in Orlicz spaces", "authors": [ "David Cruz-Uribe", "Scott Rodney" ], "categories": [ "math.AP", "math.CA" ], "abstract": "A classical regularity result is that non-negative solutions to the Dirichlet problem $\\Delta u =f$ in a bounded domain $\\Omega$, where $f\\in L^q(\\Omega)$, $q>\\frac{n}2$, satisfy $\\|u\\|_{L^\\infty(\\Omega)} \\leq C\\|f\\|_{L^q(\\Omega)}$. We extend this result in three ways: we replace the Laplacian with a degenerate elliptic operator; we show that we can take the data $f$ in an Orlicz space $L^A(\\Omega)$ that lies strictly between $L^{\\frac{n}{2}}(\\Omega)$ and $L^q(\\Omega)$, $q>\\frac{n}2$; and we show that that we can replace the $L^A$ norm in the right-hand side by a smaller expression involving the logarithm of the \"entropy bump\" $\\|f\\|_{L^A(\\Omega)}/\\|f\\|_{L^{\\frac{n}{2}}(\\Omega)}$, generalizing a result due to Xu.", "revisions": [ { "version": "v1", "updated": "2020-11-30T01:26:58.000Z" } ], "analyses": { "subjects": [ "35B45", "35D30", "35J25", "46E30" ], "keywords": [ "bounded weak solutions", "orlicz space", "elliptic pde", "degenerate elliptic operator", "dirichlet problem" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }