arXiv:2011.12828 [math.CO]AbstractReferencesReviewsResources
Cylindric partitions and some new $A_2$ Rogers-Ramanujan identities
Sylvie Corteel, Jehanne Dousse, Ali K. Uncu
Published 2020-11-25Version 1
We study the generating functions for cylindric partitions with profile $(c_1,c_2,c_3)$ for all $c_1,c_2,c_3$ such that $c_1+c_2+c_3=5$. This allows us to discover and prove seven new $A_2$ Rogers-Ramanujan identities modulo $8$ with quadruple sums, related with work of Andrews, Schilling, and Warnaar.
Comments: 12 pages, 3 figures
Categories: math.CO
Related articles: Most relevant | Search more
Plane overpartitions and cylindric partitions
arXiv:0906.1836 [math.CO] (Published 2009-06-10)
Generating functions attached to some infinite matrices
The $\mathrm{A}_2$ Andrews-Gordon identities and cylindric partitions