{ "id": "2011.12828", "version": "v1", "published": "2020-11-25T15:34:05.000Z", "updated": "2020-11-25T15:34:05.000Z", "title": "Cylindric partitions and some new $A_2$ Rogers-Ramanujan identities", "authors": [ "Sylvie Corteel", "Jehanne Dousse", "Ali K. Uncu" ], "comment": "12 pages, 3 figures", "categories": [ "math.CO" ], "abstract": "We study the generating functions for cylindric partitions with profile $(c_1,c_2,c_3)$ for all $c_1,c_2,c_3$ such that $c_1+c_2+c_3=5$. This allows us to discover and prove seven new $A_2$ Rogers-Ramanujan identities modulo $8$ with quadruple sums, related with work of Andrews, Schilling, and Warnaar.", "revisions": [ { "version": "v1", "updated": "2020-11-25T15:34:05.000Z" } ], "analyses": { "keywords": [ "cylindric partitions", "rogers-ramanujan identities modulo", "quadruple sums", "generating functions" ], "note": { "typesetting": "TeX", "pages": 12, "language": "en", "license": "arXiv", "status": "editable" } } }