arXiv:2011.10980 [math.NT]AbstractReferencesReviewsResources
On a generalization of Menon-Sury identity to number fields involving a Dirichlet Character
Jaitra Chattopadhyay, Subha Sarkar
Published 2020-11-22Version 1
For every positive integer $n$, Sita Ramaiah's identity states that \medskip \begin{equation*} \sum_{a_1, a_2, a_1+a_2 \in (\mathbb{Z}/n\mathbb{Z})^*} \gcd(a_1+a_2-1,n) = \phi_2(n)\sigma_0(n) \; \text{ where } \; \phi_2(n)= \sum_{a_1, a_2, a_1+a_2 \in (\mathbb{Z}/n\mathbb{Z})^*} 1, \end{equation*} \medskip where $(\mathbb{Z}/n\mathbb{Z})^*$ is the multiplicative group of units of the ring $\mathbb{Z}/n\mathbb{Z}$ and $\sigma_s(n) = \displaystyle\sum_{d\mid n}d^s$. \smallskip This identity can also be viewed as a generalization of Menon's identity. In this article, we generalize this identity to an algebraic number field $K$ involving a Dirichlet character $\chi$. Our result is a further generalization of a recent result in \cite{wj} and \cite{sury}.