{ "id": "2011.10980", "version": "v1", "published": "2020-11-22T10:35:15.000Z", "updated": "2020-11-22T10:35:15.000Z", "title": "On a generalization of Menon-Sury identity to number fields involving a Dirichlet Character", "authors": [ "Jaitra Chattopadhyay", "Subha Sarkar" ], "comment": "11 pages", "categories": [ "math.NT" ], "abstract": "For every positive integer $n$, Sita Ramaiah's identity states that \\medskip \\begin{equation*} \\sum_{a_1, a_2, a_1+a_2 \\in (\\mathbb{Z}/n\\mathbb{Z})^*} \\gcd(a_1+a_2-1,n) = \\phi_2(n)\\sigma_0(n) \\; \\text{ where } \\; \\phi_2(n)= \\sum_{a_1, a_2, a_1+a_2 \\in (\\mathbb{Z}/n\\mathbb{Z})^*} 1, \\end{equation*} \\medskip where $(\\mathbb{Z}/n\\mathbb{Z})^*$ is the multiplicative group of units of the ring $\\mathbb{Z}/n\\mathbb{Z}$ and $\\sigma_s(n) = \\displaystyle\\sum_{d\\mid n}d^s$. \\smallskip This identity can also be viewed as a generalization of Menon's identity. In this article, we generalize this identity to an algebraic number field $K$ involving a Dirichlet character $\\chi$. Our result is a further generalization of a recent result in \\cite{wj} and \\cite{sury}.", "revisions": [ { "version": "v1", "updated": "2020-11-22T10:35:15.000Z" } ], "analyses": { "keywords": [ "dirichlet character", "menon-sury identity", "generalization", "sita ramaiahs identity states", "algebraic number field" ], "note": { "typesetting": "TeX", "pages": 11, "language": "en", "license": "arXiv", "status": "editable" } } }