arXiv Analytics

Sign in

arXiv:2011.10723 [math.AP]AbstractReferencesReviewsResources

Non-uniform continuous dependence on initial data for a two_component Novikov system in Besov space

Xing Wu, Jie Cao

Published 2020-11-21Version 1

In this paper, we show that the solution map of the two-component Novikov system is not uniformly continuous on the initial data in Besov spaces $B_{p, r}^{s-1}(\mathbb{R})\times B_{p, r}^s(\mathbb{R})$ with $s>\max\{1+\frac{1}{p}, \frac{3}{2}\}$, $1\leq p< \infty$, $1\leq r<\infty$. Our result covers and extends the previous non-uniform continuity in Sobolev spaces $H^{s-1}(\mathbb{R})\times H^s(\mathbb{R})$ for $s>\frac{5}{2}$ (J. Math. Phys., 2017) to Besov spaces.

Comments: This paper has been submitted
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:2202.06304 [math.AP] (Published 2022-02-13)
Ill_posedness for a two_component Novikov system in Besov space
arXiv:2105.11287 [math.AP] (Published 2021-05-24)
Global existence for the Jordan--Moore--Gibson--Thompson equation in Besov spaces
arXiv:math/0505434 [math.AP] (Published 2005-05-20, updated 2006-03-21)
Quasi-geostrophic equations with initial data in Banach spaces of local measures