{ "id": "2011.10723", "version": "v1", "published": "2020-11-21T05:13:56.000Z", "updated": "2020-11-21T05:13:56.000Z", "title": "Non-uniform continuous dependence on initial data for a two_component Novikov system in Besov space", "authors": [ "Xing Wu", "Jie Cao" ], "comment": "This paper has been submitted", "categories": [ "math.AP" ], "abstract": "In this paper, we show that the solution map of the two-component Novikov system is not uniformly continuous on the initial data in Besov spaces $B_{p, r}^{s-1}(\\mathbb{R})\\times B_{p, r}^s(\\mathbb{R})$ with $s>\\max\\{1+\\frac{1}{p}, \\frac{3}{2}\\}$, $1\\leq p< \\infty$, $1\\leq r<\\infty$. Our result covers and extends the previous non-uniform continuity in Sobolev spaces $H^{s-1}(\\mathbb{R})\\times H^s(\\mathbb{R})$ for $s>\\frac{5}{2}$ (J. Math. Phys., 2017) to Besov spaces.", "revisions": [ { "version": "v1", "updated": "2020-11-21T05:13:56.000Z" } ], "analyses": { "keywords": [ "besov space", "non-uniform continuous dependence", "initial data", "two-component novikov system", "solution map" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }