arXiv Analytics

Sign in

arXiv:2011.09187 [math.CO]AbstractReferencesReviewsResources

The Buchweitz set of a numerical semigroup

S. Eliahou, J. I. García-García, D. Marín-Aragón, A. Vigneron-Tenorio

Published 2020-11-18Version 1

Let $A \subset {\mathbb Z}$ be a finite subset. We denote by $\mathcal{B}(A)$ the set of all integers $n \ge 2$ such that $|nA| > (2n-1)(|A|-1)$, where $nA=A+\cdots+A$ denotes the $n$-fold sumset of $A$. The motivation to consider $\mathcal{B}(A)$ stems from Buchweitz's discovery in 1980 that if a numerical semigroup $S \subseteq {\mathbb N}$ is a Weierstrass semigroup, then $\mathcal{B}({\mathbb N} \setminus S) = \emptyset$. By constructing instances where this condition fails, Buchweitz disproved a longstanding conjecture by Hurwitz (1893). In this paper, we prove that for any numerical semigroup $S \subset {\mathbb N}$ of genus $g \ge 2$, the set $\mathcal{B}({\mathbb N} \setminus S) $ is finite, of unbounded cardinality as $S$ varies.

Related articles: Most relevant | Search more
arXiv:2011.01690 [math.CO] (Published 2020-11-03)
Supersymmetric gaps of a numerical semigroup with two generators
arXiv:2406.09848 [math.CO] (Published 2024-06-14)
On Isolated Gaps of Numerical Semigroups of embedding dimension two
arXiv:2211.07811 [math.CO] (Published 2022-11-15)
The Expected Embedding Dimension, type and weight of a Numerical Semigroup