{ "id": "2011.09187", "version": "v1", "published": "2020-11-18T10:20:09.000Z", "updated": "2020-11-18T10:20:09.000Z", "title": "The Buchweitz set of a numerical semigroup", "authors": [ "S. Eliahou", "J. I. García-García", "D. Marín-Aragón", "A. Vigneron-Tenorio" ], "categories": [ "math.CO", "math.AC", "math.NT" ], "abstract": "Let $A \\subset {\\mathbb Z}$ be a finite subset. We denote by $\\mathcal{B}(A)$ the set of all integers $n \\ge 2$ such that $|nA| > (2n-1)(|A|-1)$, where $nA=A+\\cdots+A$ denotes the $n$-fold sumset of $A$. The motivation to consider $\\mathcal{B}(A)$ stems from Buchweitz's discovery in 1980 that if a numerical semigroup $S \\subseteq {\\mathbb N}$ is a Weierstrass semigroup, then $\\mathcal{B}({\\mathbb N} \\setminus S) = \\emptyset$. By constructing instances where this condition fails, Buchweitz disproved a longstanding conjecture by Hurwitz (1893). In this paper, we prove that for any numerical semigroup $S \\subset {\\mathbb N}$ of genus $g \\ge 2$, the set $\\mathcal{B}({\\mathbb N} \\setminus S) $ is finite, of unbounded cardinality as $S$ varies.", "revisions": [ { "version": "v1", "updated": "2020-11-18T10:20:09.000Z" } ], "analyses": { "subjects": [ "14H55", "11P70", "20M14" ], "keywords": [ "numerical semigroup", "buchweitz set", "finite subset", "condition fails", "weierstrass semigroup" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }