arXiv Analytics

Sign in

arXiv:2011.07350 [math.RT]AbstractReferencesReviewsResources

Atomic basis of quantum cluster algebra of type $\widetilde{A}_{2n-1,1}$

Ming Ding, Fan Xu, Xueqing Chen

Published 2020-11-14Version 1

Let $Q$ be the affine quiver of type $\widetilde{A}_{2n-1,1}$ and $\mathcal{A}_{q}(Q)$ be the quantum cluster algebra associated to the valued quiver $(Q,(2,2,\dots,2))$. We prove some cluster multiplication formulas, and deduce that the cluster variables associated with vertices of $Q$ satisfy a quantum analogue of the constant coefficient linear relations. We then construct two bar-invariant $\mathbb{Z}[q^{\pm\frac{1}{2}}]$-bases $\mathcal{B}$ and $\mathcal{S}$ of $\mathcal{A}_{q}(Q)$ consisting of positive elements, and prove that $\mathcal{B}$ is an atomic basis.

Related articles: Most relevant | Search more
arXiv:2003.12257 [math.RT] (Published 2020-03-27)
Poisson structure and second quantization of quantum cluster algebras
arXiv:1101.0580 [math.RT] (Published 2011-01-03, updated 2013-05-23)
Quantum cluster algebras of type A and the dual canonical basis
arXiv:math/0403206 [math.RT] (Published 2004-03-12)
The composition algebra of an affine quiver