{ "id": "2011.07350", "version": "v1", "published": "2020-11-14T17:51:25.000Z", "updated": "2020-11-14T17:51:25.000Z", "title": "Atomic basis of quantum cluster algebra of type $\\widetilde{A}_{2n-1,1}$", "authors": [ "Ming Ding", "Fan Xu", "Xueqing Chen" ], "comment": "21 pages", "categories": [ "math.RT", "math.QA", "math.RA" ], "abstract": "Let $Q$ be the affine quiver of type $\\widetilde{A}_{2n-1,1}$ and $\\mathcal{A}_{q}(Q)$ be the quantum cluster algebra associated to the valued quiver $(Q,(2,2,\\dots,2))$. We prove some cluster multiplication formulas, and deduce that the cluster variables associated with vertices of $Q$ satisfy a quantum analogue of the constant coefficient linear relations. We then construct two bar-invariant $\\mathbb{Z}[q^{\\pm\\frac{1}{2}}]$-bases $\\mathcal{B}$ and $\\mathcal{S}$ of $\\mathcal{A}_{q}(Q)$ consisting of positive elements, and prove that $\\mathcal{B}$ is an atomic basis.", "revisions": [ { "version": "v1", "updated": "2020-11-14T17:51:25.000Z" } ], "analyses": { "subjects": [ "16G20", "13F60" ], "keywords": [ "quantum cluster algebra", "atomic basis", "constant coefficient linear relations", "cluster multiplication formulas", "affine quiver" ], "note": { "typesetting": "TeX", "pages": 21, "language": "en", "license": "arXiv", "status": "editable" } } }