arXiv:2011.05220 [math.RT]AbstractReferencesReviewsResources
Relations Between the Strong Global Dimension, Complexes of Fized Size and Derived Category
Y. Calderón-Henao, F. Gallego-Olaya, H. Giraldo
Published 2020-11-10Version 1
Let $\mathbb{Z}$ be the integer numbers, $\mathbb{K}$ an algebraically closed field, $\Lambda$ a finite dimensional $\mathbb{K}$-algebra, mod$\Lambda$ the category of finitely generated right modules, proj$\Lambda$ the full subcategory of mod$\Lambda$ consisting of all projective $\Lambda$-modules, and $C_n(proj\Lambda)$ the bounded complexes of projective $\Lambda$-modules of fixed size for any integer $n\geq2$. We find an algorithm to calculate the strong global dimension of $\Lambda$, when $\Lambda$ is a finite strong global dimension and derived discrete, using the Auslander-Reiten quivers of the categories $C_n(proj\Lambda)$. Also, we show the relation between the Auslander-Reiten quiver of the bounded derived category $D^b(\Lambda)$ and the Auslander-Reiten quiver of $C_{\eta+1}(proj\Lambda)$, where $\eta=s.gl.dim(\Lambda)$ (strong global dimension of $\Lambda$).