{ "id": "2011.05220", "version": "v1", "published": "2020-11-10T16:25:29.000Z", "updated": "2020-11-10T16:25:29.000Z", "title": "Relations Between the Strong Global Dimension, Complexes of Fized Size and Derived Category", "authors": [ "Y. Calderón-Henao", "F. Gallego-Olaya", "H. Giraldo" ], "comment": "16 pages and 4 figures", "categories": [ "math.RT" ], "abstract": "Let $\\mathbb{Z}$ be the integer numbers, $\\mathbb{K}$ an algebraically closed field, $\\Lambda$ a finite dimensional $\\mathbb{K}$-algebra, mod$\\Lambda$ the category of finitely generated right modules, proj$\\Lambda$ the full subcategory of mod$\\Lambda$ consisting of all projective $\\Lambda$-modules, and $C_n(proj\\Lambda)$ the bounded complexes of projective $\\Lambda$-modules of fixed size for any integer $n\\geq2$. We find an algorithm to calculate the strong global dimension of $\\Lambda$, when $\\Lambda$ is a finite strong global dimension and derived discrete, using the Auslander-Reiten quivers of the categories $C_n(proj\\Lambda)$. Also, we show the relation between the Auslander-Reiten quiver of the bounded derived category $D^b(\\Lambda)$ and the Auslander-Reiten quiver of $C_{\\eta+1}(proj\\Lambda)$, where $\\eta=s.gl.dim(\\Lambda)$ (strong global dimension of $\\Lambda$).", "revisions": [ { "version": "v1", "updated": "2020-11-10T16:25:29.000Z" } ], "analyses": { "subjects": [ "18Gxx", "F.2.2" ], "keywords": [ "derived category", "auslander-reiten quiver", "fized size", "finite strong global dimension", "full subcategory" ], "note": { "typesetting": "TeX", "pages": 16, "language": "en", "license": "arXiv", "status": "editable" } } }