arXiv Analytics

Sign in

arXiv:2011.03954 [math.GT]AbstractReferencesReviewsResources

Dominating CAT(-1) surface group representations by Fuchsian ones

Florestan Martin-Baillon

Published 2020-11-08Version 1

We show that for every representation $ \rho : \pi_{1} (S_{g}) \to \text{Isom}(X) $ of the fundamental group of a genus $ g \ge 2 $ surface to the isometry group of a complete $ \text{CAT}(-1) $ metric space $ X $ there exists a Fuchsian representation $ j $ and a $ (j, \rho) $-equivariant map from $ \mathbb{H}^{2} $ to $ X $ which is $ c $ -Lipschitz for some $ c < 1 $, or $ \rho $ restricts to a Fuchsian representation. This generalizes results of Gueritaud-Kassel-Wolff, Deroin-Tholozan and Daskalopoulos-Mese-Sanders-Vdovina

Related articles: Most relevant | Search more
arXiv:2110.13896 [math.GT] (Published 2021-10-26, updated 2022-10-05)
Action-angle coordinates for surface group representations in genus zero
arXiv:1411.6755 [math.GT] (Published 2014-11-25)
On Fenchel-Nielsen Coordinates of Surface Group Representations into SU(3,1)
arXiv:2001.10262 [math.GT] (Published 2020-01-28)
Topological representation of the geometry of metric spaces