{ "id": "2011.03954", "version": "v1", "published": "2020-11-08T11:04:42.000Z", "updated": "2020-11-08T11:04:42.000Z", "title": "Dominating CAT(-1) surface group representations by Fuchsian ones", "authors": [ "Florestan Martin-Baillon" ], "categories": [ "math.GT" ], "abstract": "We show that for every representation $ \\rho : \\pi_{1} (S_{g}) \\to \\text{Isom}(X) $ of the fundamental group of a genus $ g \\ge 2 $ surface to the isometry group of a complete $ \\text{CAT}(-1) $ metric space $ X $ there exists a Fuchsian representation $ j $ and a $ (j, \\rho) $-equivariant map from $ \\mathbb{H}^{2} $ to $ X $ which is $ c $ -Lipschitz for some $ c < 1 $, or $ \\rho $ restricts to a Fuchsian representation. This generalizes results of Gueritaud-Kassel-Wolff, Deroin-Tholozan and Daskalopoulos-Mese-Sanders-Vdovina", "revisions": [ { "version": "v1", "updated": "2020-11-08T11:04:42.000Z" } ], "analyses": { "subjects": [ "51F99" ], "keywords": [ "surface group representations", "dominating cat", "fuchsian representation", "isometry group", "metric space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }