arXiv:2010.14975 [math.RT]AbstractReferencesReviewsResources
Semisimplicity of the $DS$ functor for the orthosymplectic Lie superalgebra
Maria Gorelik, Thorsten Heidersdorf
Published 2020-10-28Version 1
We prove that the Duflo-Serganova functor $DS_x$ attached to an odd nilpotent element $x$ of $\mathfrak{osp}(m|2n)$ is semisimple, i.e. sends a semisimple representation $M$ of $\mathfrak{osp}(m|2n)$ to a semisimple representation of $\mathfrak{osp}(m-2k|2n-2k)$ where $k$ is the rank of $x$. We prove a closed formula for $DS_x(L(\lambda))$ in terms of the arc diagram attached to $\lambda$.
Categories: math.RT
Related articles: Most relevant | Search more
arXiv:2108.02617 [math.RT] (Published 2021-08-05)
On semisimplicity of Jantzen middles for the periplectic Lie superalgebra
arXiv:2002.12836 [math.RT] (Published 2020-02-28)
A Fock model and the Segal-Bargmann transform for the minimal representation of the orthosymplectic Lie superalgebra $\mathfrak{osp}(m,2|2n)$
arXiv:1507.01329 [math.RT] (Published 2015-07-06)
Invariants of the orthosymplectic Lie superalgebra and super Pfaffians