{ "id": "2010.14975", "version": "v1", "published": "2020-10-28T13:36:47.000Z", "updated": "2020-10-28T13:36:47.000Z", "title": "Semisimplicity of the $DS$ functor for the orthosymplectic Lie superalgebra", "authors": [ "Maria Gorelik", "Thorsten Heidersdorf" ], "categories": [ "math.RT" ], "abstract": "We prove that the Duflo-Serganova functor $DS_x$ attached to an odd nilpotent element $x$ of $\\mathfrak{osp}(m|2n)$ is semisimple, i.e. sends a semisimple representation $M$ of $\\mathfrak{osp}(m|2n)$ to a semisimple representation of $\\mathfrak{osp}(m-2k|2n-2k)$ where $k$ is the rank of $x$. We prove a closed formula for $DS_x(L(\\lambda))$ in terms of the arc diagram attached to $\\lambda$.", "revisions": [ { "version": "v1", "updated": "2020-10-28T13:36:47.000Z" } ], "analyses": { "subjects": [ "17B10", "17B20", "17B55", "18D10" ], "keywords": [ "orthosymplectic lie superalgebra", "semisimplicity", "semisimple representation", "odd nilpotent element", "duflo-serganova functor" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }