arXiv Analytics

Sign in

arXiv:2010.13930 [math.CO]AbstractReferencesReviewsResources

Promotion and Cyclic Sieving on Rectangular $δ$-Semistandard Tableaux

Tair Akhmejanov, Balázs Elek

Published 2020-10-26Version 1

Let $\delta=(\delta_1,\ldots,\delta_n)$ be a string of letters $h$ and $v$. We define a Young tableau to be $\delta$-semistandard if the entries are weakly increasing along rows and columns, and the entries $i$ form a horizontal strip if $\delta_i=h$ and a vertical strip if $\delta_i=v$. We define $\delta$-promotion on such tableaux via a modified jeu-de-taquin. The first main result is that $\delta$-promotion has period $n$ on rectangular $\delta$-semistandard tableaux, generalizing the result of Haiman for rectangular semistandard tableaux. The second main result states that the set of rectangular $\delta$-semistandard tableaux for fixed $\delta$ and content $\gamma$ exhibits a cyclic sieving phenomenon with the generalized Kostka polynomial. To do so we follow Fontaine-Kamnitzer and associate to $(\delta,\gamma)$ an invariant space $(V_{\lambda^1}\otimes\cdots\otimes V_{\lambda^n})^{SL_m}$ where each $V_{\lambda^i}$ is an alternating or symmetric representation. We show that the Satake basis of the corresponding invariant space is indexed by the set of tableaux corresponding to $(\delta,\gamma)$ and is permuted by rotation of tensor factors. We then diagonalize the rotation action using the fusion product. This cyclic sieving generalizes the result of Rhoades and Fontaine-Kamnitzer.

Related articles: Most relevant | Search more
arXiv:2004.01140 [math.CO] (Published 2020-04-02)
Skew characters and cyclic sieving
arXiv:1408.6484 [math.CO] (Published 2014-08-27)
Cyclic Sieving and Plethysm Coefficients
arXiv:2502.00378 [math.CO] (Published 2025-02-01)
Cyclic Sieving of Multisets with Bounded Multiplicity and the Frobenius Coin Problem