{ "id": "2010.13930", "version": "v1", "published": "2020-10-26T22:22:04.000Z", "updated": "2020-10-26T22:22:04.000Z", "title": "Promotion and Cyclic Sieving on Rectangular $δ$-Semistandard Tableaux", "authors": [ "Tair Akhmejanov", "Balázs Elek" ], "categories": [ "math.CO", "math.RT" ], "abstract": "Let $\\delta=(\\delta_1,\\ldots,\\delta_n)$ be a string of letters $h$ and $v$. We define a Young tableau to be $\\delta$-semistandard if the entries are weakly increasing along rows and columns, and the entries $i$ form a horizontal strip if $\\delta_i=h$ and a vertical strip if $\\delta_i=v$. We define $\\delta$-promotion on such tableaux via a modified jeu-de-taquin. The first main result is that $\\delta$-promotion has period $n$ on rectangular $\\delta$-semistandard tableaux, generalizing the result of Haiman for rectangular semistandard tableaux. The second main result states that the set of rectangular $\\delta$-semistandard tableaux for fixed $\\delta$ and content $\\gamma$ exhibits a cyclic sieving phenomenon with the generalized Kostka polynomial. To do so we follow Fontaine-Kamnitzer and associate to $(\\delta,\\gamma)$ an invariant space $(V_{\\lambda^1}\\otimes\\cdots\\otimes V_{\\lambda^n})^{SL_m}$ where each $V_{\\lambda^i}$ is an alternating or symmetric representation. We show that the Satake basis of the corresponding invariant space is indexed by the set of tableaux corresponding to $(\\delta,\\gamma)$ and is permuted by rotation of tensor factors. We then diagonalize the rotation action using the fusion product. This cyclic sieving generalizes the result of Rhoades and Fontaine-Kamnitzer.", "revisions": [ { "version": "v1", "updated": "2020-10-26T22:22:04.000Z" } ], "analyses": { "subjects": [ "05E10" ], "keywords": [ "cyclic sieving", "second main result states", "rectangular semistandard tableaux", "first main result", "corresponding invariant space" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }