arXiv Analytics

Sign in

arXiv:2010.13526 [math.NT]AbstractReferencesReviewsResources

$q$-Analogues of some supercongruences related to Euler numbers

Victor J. W. Guo

Published 2020-10-20Version 1

Let $E_n$ be the $n$-th Euler number and $(a)_n=a(a+1)\cdots (a+n-1)$ the rising factorial. Let $p>3$ be a prime. In 2012, Sun proved the that $$ \sum^{(p-1)/2}_{k=0}(-1)^k(4k+1)\frac{(\frac{1}{2})_k^3}{k!^3} \equiv p(-1)^{(p-1)/2}+p^3E_{p-3} \pmod{p^4}, $$ which is a refinement of a famous supercongruence of Van Hamme. In 2016, Chen, Xie, and He established the following result: $$ \sum_{k=0}^{p-1}(-1)^k (3k+1)\frac{(\frac{1}{2})_k^3}{k!^3} 2^{3k} \equiv p(-1)^{(p-1)/2}+p^3E_{p-3} \pmod{p^4}, $$ which was originally conjectured by Sun. In this paper we give $q$-analogues of the above two supercongruences by employing the $q$-WZ method. As a conclusion, we provide a $q$-analogue of the following supercongruence of Sun: $$ \sum_{k=0}^{(p-1)/2}\frac{(\frac{1}{2})_k^2}{k!^2} \equiv (-1)^{(p-1)/2}+p^2 E_{p-3} \pmod{p^3}. $$

Comments: 12 pages
Categories: math.NT, math.CO
Subjects: 11B65, 11A07, 33F10
Related articles: Most relevant | Search more
arXiv:1011.1902 [math.NT] (Published 2010-11-08, updated 2014-02-18)
A refinement of a congruence result by van Hamme and Mortenson
arXiv:1504.01976 [math.NT] (Published 2015-04-08)
On the (K.2) supercongruence of Van Hamme
arXiv:1807.03987 [math.NT] (Published 2018-07-11)
On van Hamme's (A.2) and (H.2) supercongruences