arXiv:1807.03987 [math.NT]AbstractReferencesReviewsResources
On van Hamme's (A.2) and (H.2) supercongruences
Published 2018-07-11Version 1
In 1997, van Hamme conjectured 13 Ramanujan-type supercongruences labeled (A.2)--(M.2). Using some combinatorial identities discovered by Sigma, we extend (A.2) and (H.2) to supercongruences modulo $p^4$ for primes $p\equiv 3\pmod{4}$, which appear to be new.
Comments: 9 pages
Related articles: Most relevant | Search more
arXiv:1101.1050 [math.NT] (Published 2011-01-05)
Some supercongruences modulo $p^2$
arXiv:1910.07551 [math.NT] (Published 2019-10-10)
$q$-Analogues of Dwork-type supercongruences
arXiv:1504.01976 [math.NT] (Published 2015-04-08)
On the (K.2) supercongruence of Van Hamme