arXiv:2010.08408 [math.NT]AbstractReferencesReviewsResources
Galois representations for even general special orthogonal groups
Published 2020-10-16Version 1
We prove the existence of $\mathrm{GSpin}_{2n}$-valued Galois representations corresponding to cohomological cuspidal automorphic representations of certain quasi-split forms of $\mathrm{GSO}_{2n}$ under the local hypotheses that there is a Steinberg component and that the archimedean parameters are regular for the standard representation. This is based on the cohomology of Shimura varieties of abelian type, of type $D^{\mathbb{H}}$, arising from forms of $\mathrm{GSO}_{2n}$. As an application, under similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of (half) spin $L$-functions, and improve on the construction of $\mathrm{SO}_{2n}$-valued Galois representations by removing the outer automorphism ambiguity.