arXiv Analytics

Sign in

arXiv:1910.03164 [math.NT]AbstractReferencesReviewsResources

Potential automorphy of $\mathrm{GSpin}_{2n+1}$-valued Galois representations

Stefan Patrikis, Shiang Tang

Published 2019-10-08Version 1

We prove a potentially automorphy theorem for suitable Galois representations $\Gamma_{F^+} \to \mathrm{GSpin}_{2n+1}(\overline{\mathbb{F}}_p)$ and $\Gamma_{F^+} \to \mathrm{GSpin}_{2n+1}(\overline{\mathbb{Q}}_p)$, where $\Gamma_{F^+}$ is the absolute Galois group of a totally real field $F^+$. We also prove results on solvable descent for $\mathrm{GSp}_{2n}(\mathbb{A}_{F^+})$ and use these to put representations $\Gamma_{F^+} \to \mathrm{GSpin}_{2n+1}(\overline{\mathbb{Q}}_p)$ into compatible systems of $\mathrm{GSpin}_{2n+1}(\overline{\mathbb{Q}}_{\ell})$-valued representations.

Related articles: Most relevant | Search more
arXiv:1010.2561 [math.NT] (Published 2010-10-13, updated 2013-12-09)
Potential automorphy and change of weight
arXiv:0810.2106 [math.NT] (Published 2008-10-13, updated 2010-04-21)
On Serre's conjecture for mod l Galois representations over totally real fields
arXiv:math/0007211 [math.NT] (Published 2000-07-20)
Relatively projective groups as absolute Galois groups