{ "id": "1910.03164", "version": "v1", "published": "2019-10-08T01:54:02.000Z", "updated": "2019-10-08T01:54:02.000Z", "title": "Potential automorphy of $\\mathrm{GSpin}_{2n+1}$-valued Galois representations", "authors": [ "Stefan Patrikis", "Shiang Tang" ], "comment": "comments welcome!", "categories": [ "math.NT" ], "abstract": "We prove a potentially automorphy theorem for suitable Galois representations $\\Gamma_{F^+} \\to \\mathrm{GSpin}_{2n+1}(\\overline{\\mathbb{F}}_p)$ and $\\Gamma_{F^+} \\to \\mathrm{GSpin}_{2n+1}(\\overline{\\mathbb{Q}}_p)$, where $\\Gamma_{F^+}$ is the absolute Galois group of a totally real field $F^+$. We also prove results on solvable descent for $\\mathrm{GSp}_{2n}(\\mathbb{A}_{F^+})$ and use these to put representations $\\Gamma_{F^+} \\to \\mathrm{GSpin}_{2n+1}(\\overline{\\mathbb{Q}}_p)$ into compatible systems of $\\mathrm{GSpin}_{2n+1}(\\overline{\\mathbb{Q}}_{\\ell})$-valued representations.", "revisions": [ { "version": "v1", "updated": "2019-10-08T01:54:02.000Z" } ], "analyses": { "subjects": [ "11F80", "11R39" ], "keywords": [ "valued galois representations", "potential automorphy", "absolute galois group", "potentially automorphy theorem", "totally real field" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }