arXiv:2010.03417 [math.CO]AbstractReferencesReviewsResources
Poincaré polynomial for fully commutative elements in the symmetric group
Sadek AL Harbat, Corinne Blondel
Published 2020-10-07Version 1
Let $W^c(A_n)$ be the set of fully commutative elements of the Coxeter group $W(A_n)$. Let $$ a_n(q)= \sum_{w \in W^c(A_n)} q^{l(w)} . $$ We compute $a_n(q)$.
Related articles: Most relevant | Search more
arXiv:2004.01370 [math.CO] (Published 2020-04-02)
Sequences: Polynomial, C-finite, Holonomic, ...
arXiv:1511.08788 [math.CO] (Published 2015-11-27)
On the length of fully commutative elements
arXiv:1904.06630 [math.CO] (Published 2019-04-14)
Flagged $(\mathcal{P},ρ)$-partitions