{ "id": "2010.03417", "version": "v1", "published": "2020-10-07T13:55:44.000Z", "updated": "2020-10-07T13:55:44.000Z", "title": "Poincaré polynomial for fully commutative elements in the symmetric group", "authors": [ "Sadek AL Harbat", "Corinne Blondel" ], "categories": [ "math.CO", "math.GR" ], "abstract": "Let $W^c(A_n)$ be the set of fully commutative elements of the Coxeter group $W(A_n)$. Let $$ a_n(q)= \\sum_{w \\in W^c(A_n)} q^{l(w)} . $$ We compute $a_n(q)$.", "revisions": [ { "version": "v1", "updated": "2020-10-07T13:55:44.000Z" } ], "analyses": { "subjects": [ "05Axx", "20F55" ], "keywords": [ "fully commutative elements", "symmetric group", "polynomial" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }