arXiv:2009.08846 [math.CO]AbstractReferencesReviewsResources
Zero subsums in vector spaces over finite fields
Cosmin Pohoata, Dmitriy Zakharov
Published 2020-09-18Version 1
The Olson constant $\mathcal{O}L(\mathbb{F}_{p}^{d})$ represents the minimum positive integer $t$ with the property that every subset $A\subset \mathbb{F}_{p}^{d}$ of cardinality $t$ contains a nonempty subset with vanishing sum. The problem of estimating $\mathcal{O}L(\mathbb{F}_{p}^{d})$ is one of the oldest questions in additive combinatorics, with a long and interesting history even for the case $d=1$. In this paper, we prove that for any fixed $d \geq 2$ and $\epsilon > 0$, the Olson constant of $\mathbb{F}_{p}^{d}$ satisfies the inequality $$\mathcal{O}L(\mathbb{F}_{p}^{d}) \leq (d-1+\epsilon)p$$ for all sufficiently large primes $p$. This settles a conjecture of Hoi Nguyen and Van Vu.