{ "id": "2009.08846", "version": "v1", "published": "2020-09-18T14:05:31.000Z", "updated": "2020-09-18T14:05:31.000Z", "title": "Zero subsums in vector spaces over finite fields", "authors": [ "Cosmin Pohoata", "Dmitriy Zakharov" ], "categories": [ "math.CO", "math.NT" ], "abstract": "The Olson constant $\\mathcal{O}L(\\mathbb{F}_{p}^{d})$ represents the minimum positive integer $t$ with the property that every subset $A\\subset \\mathbb{F}_{p}^{d}$ of cardinality $t$ contains a nonempty subset with vanishing sum. The problem of estimating $\\mathcal{O}L(\\mathbb{F}_{p}^{d})$ is one of the oldest questions in additive combinatorics, with a long and interesting history even for the case $d=1$. In this paper, we prove that for any fixed $d \\geq 2$ and $\\epsilon > 0$, the Olson constant of $\\mathbb{F}_{p}^{d}$ satisfies the inequality $$\\mathcal{O}L(\\mathbb{F}_{p}^{d}) \\leq (d-1+\\epsilon)p$$ for all sufficiently large primes $p$. This settles a conjecture of Hoi Nguyen and Van Vu.", "revisions": [ { "version": "v1", "updated": "2020-09-18T14:05:31.000Z" } ], "analyses": { "keywords": [ "vector spaces", "finite fields", "zero subsums", "olson constant", "minimum positive integer" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }