arXiv:2008.07850 [math.NT]AbstractReferencesReviewsResources
On the weighted average number of subgroups of ${\mathbb {Z}}_{m}\times {\mathbb {Z}}_{n}$ with $mn\leq x$
Isao Kiuchi, Sumaia Saad Eddin
Published 2020-08-18Version 1
Let $\mathbb{Z}_{m}$ be the additive group of residue classes modulo $m$. For any positive integers $m$ and $n$, let $s(m,n)$ and $c(m,n)$ denote the total number of subgroups and cyclic subgroups of the group ${\mathbb{Z}}_{m}\times {\mathbb{Z}}_{n}$, respectively. Define $$ \widetilde{D}_{s}(x) = \sum_{mn\leq x}s(m,n)\log\frac{x}{mn} \quad \quad \widetilde{D}_{c}(x) = \sum_{mn\leq x}c(m,n)\log\frac{x}{mn}. $$ In this paper, we study the asymptotic behaviour of functions $\widetilde{D}_{s}(x)$ and $\widetilde{D}_{c}(x)$.
Comments: 9 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1903.12445 [math.NT] (Published 2019-03-29)
On asymptotic behaviour of Dirichlet inverse
arXiv:1307.1414 [math.NT] (Published 2013-07-04)
On the average number of subgroups of the group $\Z_m \times \Z_n$
arXiv:2411.06126 [math.NT] (Published 2024-11-09)
On the error term concerning the number of cyclic subgroups of Z_l \times Z_m \times Z_n with lmn\leqslant x