{ "id": "2008.07850", "version": "v1", "published": "2020-08-18T10:58:16.000Z", "updated": "2020-08-18T10:58:16.000Z", "title": "On the weighted average number of subgroups of ${\\mathbb {Z}}_{m}\\times {\\mathbb {Z}}_{n}$ with $mn\\leq x$", "authors": [ "Isao Kiuchi", "Sumaia Saad Eddin" ], "comment": "9 pages", "categories": [ "math.NT" ], "abstract": "Let $\\mathbb{Z}_{m}$ be the additive group of residue classes modulo $m$. For any positive integers $m$ and $n$, let $s(m,n)$ and $c(m,n)$ denote the total number of subgroups and cyclic subgroups of the group ${\\mathbb{Z}}_{m}\\times {\\mathbb{Z}}_{n}$, respectively. Define $$ \\widetilde{D}_{s}(x) = \\sum_{mn\\leq x}s(m,n)\\log\\frac{x}{mn} \\quad \\quad \\widetilde{D}_{c}(x) = \\sum_{mn\\leq x}c(m,n)\\log\\frac{x}{mn}. $$ In this paper, we study the asymptotic behaviour of functions $\\widetilde{D}_{s}(x)$ and $\\widetilde{D}_{c}(x)$.", "revisions": [ { "version": "v1", "updated": "2020-08-18T10:58:16.000Z" } ], "analyses": { "subjects": [ "11A25", "11N37", "11Y60" ], "keywords": [ "weighted average number", "residue classes modulo", "asymptotic behaviour", "total number", "cyclic subgroups" ], "note": { "typesetting": "TeX", "pages": 9, "language": "en", "license": "arXiv", "status": "editable" } } }