arXiv:2008.06398 [math.NT]AbstractReferencesReviewsResources
Infinite Families of Congruences Modulo 5 for Ramanujan's General Partition Function
Published 2020-08-14Version 1
For any non-negative integer $n$ and non-zero integer $r$, let $p_r(n)$ denote Ramanujan's general partition function. By employing $q$-identities, we prove some new Ramanujan-type congruences modulo 5 for $p_r(n)$ for $r=-(5\lambda+1), -(5\lambda+3), -(5\lambda+4), -(25\lambda+1)$, $-(25\lambda+2)$, and any integer $\lambda$.
Comments: 6 Pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1703.00004 [math.NT] (Published 2017-02-28)
Some congruences modulo 5 and 25 for overpartition
arXiv:1908.06642 [math.NT] (Published 2019-08-19)
Some new congruences for $(7,t)$-regular bipartitions modulo $t$
arXiv:2407.10428 [math.NT] (Published 2024-07-15)
Parity results of PEND partition