{ "id": "2008.06398", "version": "v1", "published": "2020-08-14T14:52:26.000Z", "updated": "2020-08-14T14:52:26.000Z", "title": "Infinite Families of Congruences Modulo 5 for Ramanujan's General Partition Function", "authors": [ "Nipen Saikia", "Jubaraj Chetry" ], "comment": "6 Pages", "categories": [ "math.NT" ], "abstract": "For any non-negative integer $n$ and non-zero integer $r$, let $p_r(n)$ denote Ramanujan's general partition function. By employing $q$-identities, we prove some new Ramanujan-type congruences modulo 5 for $p_r(n)$ for $r=-(5\\lambda+1), -(5\\lambda+3), -(5\\lambda+4), -(25\\lambda+1)$, $-(25\\lambda+2)$, and any integer $\\lambda$.", "revisions": [ { "version": "v1", "updated": "2020-08-14T14:52:26.000Z" } ], "analyses": { "subjects": [ "11P82", "11P83", "05A15", "05A17" ], "keywords": [ "infinite families", "denote ramanujans general partition function", "ramanujan-type congruences modulo", "non-zero integer" ], "note": { "typesetting": "TeX", "pages": 6, "language": "en", "license": "arXiv", "status": "editable" } } }