arXiv Analytics

Sign in

arXiv:2007.14512 [math.CO]AbstractReferencesReviewsResources

Total nonnegativity and induced sign characters of the Hecke algebra

Adam Clearwater, Mark Skandera

Published 2020-07-28Version 1

Let $\mathfrak S_{[i,j]}$ be the subgroup of the symmetric group $\mathfrak S_n$ generated by adjacent transpositions $(i,i+1), \dotsc, (j-1,j)$, assuming $1 \leq i < j \leq n$. We give a combinatorial rule for evaluating induced sign characters of the type-$A$ Hecke algebra $H_n(q)$ at all elements of the form $\sum_{w \in \mathfrak S_{[i,j]}} T_w$ and at all products of such elements. This includes evaluation at some elements $C'_w(q)$ of the Kazhdan-Lusztig basis.

Related articles: Most relevant | Search more
arXiv:1212.5375 [math.CO] (Published 2012-12-21, updated 2014-03-03)
Structure coefficients of the Hecke algebra of $(S_{2n},B_n)$
arXiv:1009.5373 [math.CO] (Published 2010-09-27, updated 2012-05-04)
Generators of the Hecke algebra of $(S_{2n},B_n)$
arXiv:1012.1924 [math.CO] (Published 2010-12-09, updated 2011-01-08)
A remark on some bases in the Hecke algebra