{ "id": "2007.14512", "version": "v1", "published": "2020-07-28T22:45:14.000Z", "updated": "2020-07-28T22:45:14.000Z", "title": "Total nonnegativity and induced sign characters of the Hecke algebra", "authors": [ "Adam Clearwater", "Mark Skandera" ], "comment": "24 pages", "categories": [ "math.CO", "math.RT" ], "abstract": "Let $\\mathfrak S_{[i,j]}$ be the subgroup of the symmetric group $\\mathfrak S_n$ generated by adjacent transpositions $(i,i+1), \\dotsc, (j-1,j)$, assuming $1 \\leq i < j \\leq n$. We give a combinatorial rule for evaluating induced sign characters of the type-$A$ Hecke algebra $H_n(q)$ at all elements of the form $\\sum_{w \\in \\mathfrak S_{[i,j]}} T_w$ and at all products of such elements. This includes evaluation at some elements $C'_w(q)$ of the Kazhdan-Lusztig basis.", "revisions": [ { "version": "v1", "updated": "2020-07-28T22:45:14.000Z" } ], "analyses": { "subjects": [ "05E15", "20C08" ], "keywords": [ "hecke algebra", "total nonnegativity", "symmetric group", "adjacent transpositions", "combinatorial rule" ], "note": { "typesetting": "TeX", "pages": 24, "language": "en", "license": "arXiv", "status": "editable" } } }