arXiv:2007.10006 [math.DG]AbstractReferencesReviewsResources
On rotational surfaces in 3 dimensional de Sitter space with Weingarten condition
Published 2020-07-20Version 1
In this article, we study spacelike and timelike rotational surfaces in a 3--dimensional de Sitter space $\mathbb{S}^3_1$ which are the orbit of a regular curve under the action of the orthogonal transformation of 4--dimensional Minkowski space $\mathbb{E}^4_1$ leaving a spacelike, a timelike or a degenerate plane pointwise fixed. We determine the profile curve of such Weingarten rotational surfaces parameterized by the principal curvature. Then, we classify spacelike and timelike Weingarten rotational surface in $\mathbb{S}^3_1$ with the principal curvatures $\kappa$ and $\lambda$ satisfying $\kappa=a\lambda+b$ or $\kappa=a\lambda^m$ for special cases of constants $a, b$ and $m$.
Categories: math.DG
Related articles: Most relevant | Search more
arXiv:1910.05403 [math.DG] (Published 2019-10-11)
Timelike surfaces in the de Sitter space $\mathbb S^3_1(1)\subset \mathbb R^4_1$
arXiv:2208.13698 [math.DG] (Published 2022-08-29)
A characterization of rotational minimal surfaces in the de Sitter space
arXiv:1905.09587 [math.DG] (Published 2019-05-23)
Curvature estimates of spacelike surfaces in de Sitter space