{ "id": "2007.10006", "version": "v1", "published": "2020-07-20T11:23:49.000Z", "updated": "2020-07-20T11:23:49.000Z", "title": "On rotational surfaces in 3 dimensional de Sitter space with Weingarten condition", "authors": [ "Burcu Bektaş Demirci" ], "categories": [ "math.DG" ], "abstract": "In this article, we study spacelike and timelike rotational surfaces in a 3--dimensional de Sitter space $\\mathbb{S}^3_1$ which are the orbit of a regular curve under the action of the orthogonal transformation of 4--dimensional Minkowski space $\\mathbb{E}^4_1$ leaving a spacelike, a timelike or a degenerate plane pointwise fixed. We determine the profile curve of such Weingarten rotational surfaces parameterized by the principal curvature. Then, we classify spacelike and timelike Weingarten rotational surface in $\\mathbb{S}^3_1$ with the principal curvatures $\\kappa$ and $\\lambda$ satisfying $\\kappa=a\\lambda+b$ or $\\kappa=a\\lambda^m$ for special cases of constants $a, b$ and $m$.", "revisions": [ { "version": "v1", "updated": "2020-07-20T11:23:49.000Z" } ], "analyses": { "subjects": [ "53C40", "53C42" ], "keywords": [ "sitter space", "weingarten condition", "dimensional", "principal curvature", "timelike weingarten rotational surface" ], "note": { "typesetting": "TeX", "pages": 0, "language": "en", "license": "arXiv", "status": "editable" } } }