arXiv Analytics

Sign in

arXiv:2007.08409 [math.CO]AbstractReferencesReviewsResources

On the edit distance function of the random graph

Ryan R. Martin, Alexander W. N. Riasanovsky

Published 2020-07-16Version 1

Given a hereditary property of graphs $\mathcal{H}$ and a $p\in [0,1]$, the edit distance function ${\rm ed}_{\mathcal{H}}(p)$ is asymptotically the maximum proportion of edge-additions plus edge-deletions applied to a graph of edge density $p$ sufficient to ensure that the resulting graph satisfies $\mathcal{H}$. The edit distance function is directly related to other well-studied quantities such as the speed function for $\mathcal{H}$ and the $\mathcal{H}$-chromatic number of a random graph. Let $\mathcal{H}$ be the property of forbidding an Erd\H{o}s-R\'{e}nyi random graph $F\sim \mathbb{G}(n_0,p_0)$, and let $\varphi$ represent the golden ratio. In this paper, we show that if $p_0\in [1-1/\varphi,1/\varphi]$, then a.a.s. as $n_0\to\infty$, \begin{align*} {\rm ed}_{\mathcal{H}}(p) = (1+o(1))\,\frac{2\log n_0}{n_0} \cdot\min\left\{ \frac{p}{-\log(1-p_0)}, \frac{1-p}{-\log p_0} \right\}. \end{align*} Moreover, this holds for $p\in [1/3,2/3]$ for any $p_0\in (0,1)$.

Related articles: Most relevant | Search more
arXiv:1012.3716 [math.CO] (Published 2010-12-16, updated 2014-09-27)
On the computation of edit distance functions
arXiv:2210.12754 [math.CO] (Published 2022-10-23)
Largest subgraph from a hereditary property in a random graph
arXiv:1012.0802 [math.CO] (Published 2010-12-03, updated 2011-02-19)
On the edit distance from $K_{2,t}$-free graphs II: Cases $t\geq 5$