{ "id": "2007.08409", "version": "v1", "published": "2020-07-16T15:36:56.000Z", "updated": "2020-07-16T15:36:56.000Z", "title": "On the edit distance function of the random graph", "authors": [ "Ryan R. Martin", "Alexander W. N. Riasanovsky" ], "comment": "33 pages, 3 figures", "categories": [ "math.CO", "math.PR" ], "abstract": "Given a hereditary property of graphs $\\mathcal{H}$ and a $p\\in [0,1]$, the edit distance function ${\\rm ed}_{\\mathcal{H}}(p)$ is asymptotically the maximum proportion of edge-additions plus edge-deletions applied to a graph of edge density $p$ sufficient to ensure that the resulting graph satisfies $\\mathcal{H}$. The edit distance function is directly related to other well-studied quantities such as the speed function for $\\mathcal{H}$ and the $\\mathcal{H}$-chromatic number of a random graph. Let $\\mathcal{H}$ be the property of forbidding an Erd\\H{o}s-R\\'{e}nyi random graph $F\\sim \\mathbb{G}(n_0,p_0)$, and let $\\varphi$ represent the golden ratio. In this paper, we show that if $p_0\\in [1-1/\\varphi,1/\\varphi]$, then a.a.s. as $n_0\\to\\infty$, \\begin{align*} {\\rm ed}_{\\mathcal{H}}(p) = (1+o(1))\\,\\frac{2\\log n_0}{n_0} \\cdot\\min\\left\\{ \\frac{p}{-\\log(1-p_0)}, \\frac{1-p}{-\\log p_0} \\right\\}. \\end{align*} Moreover, this holds for $p\\in [1/3,2/3]$ for any $p_0\\in (0,1)$.", "revisions": [ { "version": "v1", "updated": "2020-07-16T15:36:56.000Z" } ], "analyses": { "subjects": [ "05C35", "05C80" ], "keywords": [ "edit distance function", "random graph", "edge-additions plus edge-deletions", "golden ratio", "hereditary property" ], "note": { "typesetting": "TeX", "pages": 33, "language": "en", "license": "arXiv", "status": "editable" } } }